From Whence Cometh PCs?

Lorrin R. Garson

OPCUG \& PATACS

August 18, 2012

To Set the Tone...

Computers are useless. They can only give you answers. Pablo Picasso

A picture is worth a thousand words but it takes 3,000 times the disk space. Unknown

Applying computer technology is simply finding the right wrench to pound in the correct screw. Unknown

Pre-Computer Technology

The First Computer

Results in the decimal number system (base 10)

Oog Meets Saber-Tooth Tiger...

Octal number system (base 8) invented

Pre-Computer Technology: Abacus

- Mesopotamian (2700—
 2300 BC)
- Egyptian
- Persian
- Greek
- Roman
- Chinese
- Indian
- Japanese
- Russian

Human Computer

Dryden Flight Research Center 1949 Edwards, California

- $<15^{\text {th }}-20^{\text {th }}$ century
- Manually calculated:
- Financials - commerce
\square Log tables
\square Trigometric tables
\square Navigation tables
\square Artillery ballistic tables

Pre-Computer Technology: Blase Pascal's Pascaline

Pre-Computer Technology: Slide Rule

Numerous Inventors
*Bowditch's The American Practical Navigator, 2002 Bicentennial Edition (Click here $\boldsymbol{\rightarrow}$ (i))

Pre-Computer Technology: Lorrin's Slide Rules

Lorrin Garson Post

Fred Geiger Dietzgen

Pre-Computer Technology: Charles Babbage

- British mathematician, philosopher, inventor and mechanical engineer
- Designed (and almost built) mechanical calculating machines
\square Difference Engine
\square Analytical Engine

1791-1871

Pre-Computer Technology: Difference Engine \#1

Assembled by Babbage's son after the death of his father using parts found in Babbage's laboratory

Pre-Computer Technology: Difference Engine \#1

- 2008 The first Difference Engine built
- Constructed from Babbage's plans
- Designed to build log and trig tables using polynominal functions

$$
p(x)=2 x^{2}-3 x+2
$$

London Science Museum

Pre-Computer Technology: Analytical Engine

- 1837-1871
- Design for first generalpurpose computer
\square Arithmetic logic unit
- Control flow
\square Conditional branching
\square Loops
\square Memory
\square Used punch cards

1815 Flat-Foot Luis Ponders His Toes

Hexadecimal number system (base 16) results

Early 1920s

Veterans Bureau office workers computing bonuses for World War I veterans

Burroughs Electric Adding Machines

Pre-Computer Technology:

Friden Model STW-10 Electro-Mechanical Calculator

FULIY AUTOMATIC CALCULATOR

FRIDEN CALCULATING MACHINE CO., INC.

- 1920s - 1960s
- Largely used in commerce
- Used in science and engineering when greater than 3 figure accuracy needed
- Slow and noisy

Pre-PC Technology:
 Hewlett-Packard "Cal-Tech" Calculator

- 1967
- Four function...
- Addition
\square Subtraction
\square Multiplication
\square Division
- 12 Decimal places
- Printed output
- Click here $\boldsymbol{\rightarrow} \mathbf{6}$ for details

Pre-PC Technology: Hewlett-Packard HP-35s Calculator

- 1972
- Slide rule killer
- \$395 (\$1,169 in 2012)
- RPN 1 or Algebraic
- User's Guide: click here $\rightarrow \boldsymbol{a}$

Pre-PC Technology: Texas Instruments Calculator

- 1976
- TI-30
- \$25 (\$101 in 2012)

Today - In the Computer Age

- 2012
- TI-30Xa
- \$9.99

Early Enabling Technologies

The Fear of New Technology

"It's a great invention, but it'll probably mean the end of civilization as we know it."

19th Century Enabling Technologies

Steam replaces human, animal and water power

Pre-Computer Technology: Jacquard's Programable Textile Loom

- 1801
- Joseph Marie Jacquard
- Bookbinder
\square Weaver
\square Inventor
- Loom uses punched cards
- Wove complex patterns of textiles
- In use ~150 years

Pre-Computer Technology: Herman Hollerith's Tabulating Machine

1860-1929

- Processing U.S. Census Data
- 1880 - 8 years to process
- 1890 - 1 year to process
- Electromechanical tabulation
- Factory at $31^{\text {st }}$ St \& C\&O Canal, Georgetown
- One of his companies, the Computer-TabulatingRecording Co., evolved into IBM in 1924. Click here \rightarrow a for details

Herman Hollerith's Tabulating Machine

Hollerith Pantograph (keypunch)

Pre-Computer Technology: Herman Hollerith's Punch Card

- 12 rows
- 20 columns

"Modern Day" Punch Card

Figure II-1

a punchcard and punching positions*

[^0]
20th Century Enabling Technologies

20th Century Enabling Technologies Vacuum Tubes

RCA Triode: Type 808

- 1904 John Ambrose Fleming invents the diode
- 1906 Robert von Lieben receives a patent for the triode
- 1907 Lee De Forest improves (invents?) the triode
- 1913 AT\&T buys De Forest's patent for \$50,000
- 1915 First U.S. coast-to-coast telephone call facilitated by vacuum tube amplifier. \$21/3min (\$477 in 2012)

Ad from 1933 newspaper

FOUR TUBES ARE

 NOT ENOUGH /
\$352.16 (2012)

- Moderne Type Cabinet
- 5 Latest Type Tubes
- 3-Gang Condenser
- Full Super-heterodyne Circuit
- 3-Kuob Control
- Vernier Dial
 Consonle, 852.95 ; 12 tulue Crnosle, 873.95 (14-tike De Tave Conseole, $\$ 129.50$. Cos lete.

Ad from 1933
newspaper

14-tube De Luxe Console, \$129.50

\$2,285.95 in 2012

20th Century Enabling Technologies Transistors

- 1947
- Invented by John Bardeen, William Shockley and Walter Brattain at Bell Labs*
- 1956 Nobel Prize in physics a
- Click here \rightarrow (11 for information on the transistor

[^1]
$20^{\text {th }}$ Century Enabling Technologies Integrated Circuits

- 1958
- Invented by Jack Kilby at Texas Instruments
- An electronic circuit manufactured by lithography Click here \rightarrow (i) for details
- Kilby received the 2000 Nobel Prize in Physics a

Jack Kilby’s Original Integrated Circuit

$20^{\text {th }}$ Century Enabling Technologies Microprocessors

Intel 4004

- 1971 Intel 4004, 4-bit
- 1972 Intel 8008, 8-bit
- 1974 Intel 8080, 8-bit
- 1975 National Semiconductor PACE, 16-bit
- 1979 Motorola MC68000, 32-bit
- 2003 Advanced Micro Devices AMD64, 64-bit
- 2005 Multicore processors for workstations and servers

CPU Transistor Counts 1971_2008\& Moore's Law

Types of Computers

Tablets

PCs

Computers

Predicting the Future

"It's tough to make predictions, especially about the future."

Predicting the Future

"I think there is a world market for maybe five computers." (1943)

Thomas J. Watson, Sr., 1874-1956 Chairman \& CEO of IBM

Troublesome Public Relations

- Deutsche Hollerith Maschinen Gesellshaft (GmbH)
- DEHOMAG
- IBM owned 90\%

Tom Watson, Sr. meets with Adolf Hitler, July 1937
Watson's controversial meeting with Hitler came shortly before he received a medal for "Service to the Reich" for providing tabulating equipment. Watson later returned the medal.

IBM and the Holocaust by Edwin Black Nazi Nexus by Edwin Black

A Selection of

Historical Computers

Two 54-minute videos on history of computers

Generations of Computers

- $1^{\text {st }}$ Generation (1946-1958). The Vacuum tube years
- $2^{\text {nd }}$ Generation (1959-1964). Era of the transistor
- $3^{\text {rd }}$ Generation (1965-1970). Era of integrated circuits
- $4^{\text {th }}$ Generation (1971-today). The microprocessor

Atanasoff-Berry Computer (ABC)

Click here $\boldsymbol{\rightarrow}$ (i) for a 11 min video

$$
\begin{aligned}
& 4 x+y=17 \\
& 2 x+y=9
\end{aligned}
$$

- Conceived 1937; tested 1942
- John Atanasoff \& Clifford Berry at lowa State University
- 280 triode vacuum tubes
- 700 lbs
- Used binary digits
- Performed calculations electronically
- Computation and memory separate
- Specific purpose machine: solution to simultaneous linear equations

Konrad Zuse

1910-1995

- 1941 The first programable, automatic computer
- Zuse Z3 computer
\square Programable
- 2,000 relays
$\square 22$ bit word length
$\square 5-10 \mathrm{~Hz}$ clock speed
\square Program code and data stored on punched film
- Statistical analysis of wing flutter for the Luftwaffe
- Zuse models from Z1 to Z43
- Founded company Zuse KG (sold to Siemens in 1967)

Zuse Z3 Replica Deutsches Museum
 München

Alan Turing

- British mathematician. logician, cryptanalyst and computer scientist
- The father of computer science and artificial intelligence
- During World War 2, attacked codes of:
\square Germany (Enigma)
\square Japan
\square Italy

German Enigma

- Developed 1918-1919
- Used in commerce 1920s
- Used by German military 1926 to 1945
- Quite secure iffused properly
- Click here \rightarrow (i) for more information

Turing-Welchman Bombe

- Operational March 18, 1940
- Named after Polish bomba kryptologiczna
- Used to decipher German Kriegsmarine Enigma messages

Replica

The Italian Codes

(How tough can it be?)

Cracking the Italian codes was something you did at the pub over a beer. It was both relaxing and enjoyable...

Peter Hilton
WW2 British codebreaker

British Colossus

Colossus Mark 2 Computer

- Operational 1944

First electronic, digital, programmable computer
Designed by Tommy Flowers a

- Used to decrypt German Lorenz encrypted messages (12 rotor)

ACE—Automatic Computing Engine

Pilot ACE

- 1946
- Designed by Alan Turing
- Early (first?) storedprogram computer
- National Physical Laboratory (England)
- Used by Dorothy Hodgkin* (structures of vitamin B12 and insulin)

Click here \rightarrow (i) for the structure of insulin

Harvard Mark 1

1 .

The Harvard Mark I

- 1944
- Designed by Howard Aiken \& Grace Hopper
- Built by IBM a 760,000 components U.S. Navy Bureau of Ships
- Gunnery and ballistic calculations
- 23 decimal places

Admiral Grace Hopper

- AKA "Amazing Grace"
- Computer scientist and U.S. Navy officer (41 years service)
- One of first Harvard Mark I programmers
- Developed first compiler for a computer language
- Conceptualized machineindependent programming (lead to COBOL)
- Coined "computer bug" 6

The Original Computer

146/630 1700

First actual
anctangul stantel.
closed dome.

ENIAC

- 1946
- Designed by John Mauchly \& J. Presper Eckert (University of Pennsylvania)
- Used at Aberdeen Proving Ground 19471955
- General purpose computer
- Calculating ballistic tables

Back panel of ENIAC computer (17,468 vacuum tubes)

The Future of Computers

Computers in the future may have only 1,000 vacuum tubes and perhaps only weigh 1 1/2 tons.

Popular Mechanics (1949)

IBM and the Seven Dwarfs

1. IBM
2. Burroughs
3. UNIVAC
4. NCR
5. Control Data
6. Honeywell
7. General Electric
8. RCA

The 1950s going forward...

IBM Mainframes: 1950s - 1960s

- 1401 Data Processing System
- 1401 (1959) *
- 1410 (1960) *
- 1440 (1962) *
- 1460 (1963)
- 1620 Data Processing System
- 1620 (1959) *
- 1620 Model II (1963)
- 7000 Data Processing System Series
- 7090 (1958) *
- 7030 (1960) *
- 7040 (1961)
- 7044 (1961)
- 7094 (1962) *
- 7094-II (1963)
- 7070 (1958)
- 7080 (1960)
- 7074 (1960)
- 7072 (1961)
- 7010 (1962)

IBM Mainframes: 1960s (cont.)

- System/360 Series (1964)

- Model 20 (1964)
- Model 40 (1964)*
- Model 30 (1964)*
- Model 50 (1964)*
- Model 60 (1964)
- Model 62 (1964)
- Model 70 (1964)
- Model 92 (1964)
- Model 44 (1965)*
- Model 57 (1965)
- Model 65 (1965)
- Model 67 (1965)
- Model 75 (1965)*
- Model 91 (1966)*
- Model 25 (1968)
- Model 85 (1968)
- Model 95*
- Model 195 (1969)*
- Model 22 (1971)*

IBM 2020 processing unit IBM 2040 processing unit IBM 2030 processing unit IBM 2050 processing unit IBM 2060 processing unit IBM 2062 processing unit IBM 2070 processing unit IBM 2092 processing unit IBM 2044 processing unit IBM 2057 processing unit IBM 2065 processing unit IBM 2067 processing unit IBM 2075 processing unit IBM 2091 processing unit IBM 2025 processing unit IBM 2085 processing unit (Offered on special government contract \& shipped $2 / 68$) IBM 2195 processing unit IBM 2022 processing unit

IBM Mainframes: 1970s

- System/370 Series (1970)

- Model 155 (1970)*
- Model 165 (1970)*
- Model 145 (1970)*
- Model 135 (1971)*
- Model 195 (1970)*
- Model 158 (1972)*
- Model 168 (1972)*
- Model 125 (1972)*
- Model 115 (1973)*
- Model 115-2 (1975)
- Model 125-2 (1975)
- Model 158-3 (1976)
- Model 168-3 (1976)
- Model 135-3 (1976)
- Model 145-3 (1976)
- Model 138 (1976)*
- Model 148 (1976)*
- Model 158-AP (1976)

IBM 3155 processing unit IBM 3165 processing unit IBM 3145 processing unit IBM 3135 processing unit IBM 3195 processing unit IBM 3158 processing unit IBM 3168 processing unit IBM 3125 processing unit IBM 3115 processing unit

IBM 3158-3 processing unit IBM 3168-3 processing unit IBM 3135-3 processing unit IBM 3145-3 processing unit IBM 3138 processing unit IBM 3148 processing unit Attached processor

- System/370 Compatible - 3031 Processor Complex (1977)

- $3031(1977)^{\star}$	Models 1-6
- $3031(1978)$	Models A2-A6 (attached processors)
. 3031 (1979)	Models 7 8 A7 \& A8

-3031 (1979) Models 7, 8, A7 \& A8

- System/370 Compatible - 3032 Processor Complex (1977)

- $3032(1977)^{*}$	Models 2, $4 \& 6$
- $3032(1979)$	Model 8

- System/370 Compatible - 3033 Processor Complex* (1977)
-3033U (1977) Uniprocessor models 1, 4, 6 \& 8
- 3033MP (1978) Multiprocessor models 4, 6 \& 8
- 3033 (1978) Models U12 \& U16 and M12 \& M16
-3033(1979) Attached processor models 4, 8, 12 \& 16
-3033N(1979) Models N4 \& N8
- 3033 (1980) Models S4 \& S8 and U24 and A24
-3033N (1980) Models N4, N8, N12 \& N16
- 3033 (1981) Models S4 \& S8
- 3033 (1981) Models S12 \& S16

- 4300 Processing Systems (1979)

- 4331 (1979)* Models I1 \& J1
- 4341 (1979)* Models K1 \& L1

IBM Mainframes: 1980s

- 4331 (1980)
. 4341 (1980)
- 4321 (1981)
- 4331-2 (1981)
- 4331 (1981)
- 4341 (1981)
. 4341 (1981)
- 4341 (1982)
- 4361 (1983)*
- 4381 (1983)*
- 4361 (1984)
- 4381 (1984)*
- 4381 (1984)
- 4381 (1986)
- 4381 (1987)
- 4381E (1988)
- ES/4381 (1989)

Models J2, K2, KJ2 \& L2
Models K2, L2 \& M2
Model J11

Models J11 \& K11
Models N2 \& P2
Models K10, L10, K11, L11 \& M11
Model Groups 9 \& 12
Model Groups 4 \& 5
Model Groups 1 \& 2
Models N4 \& N5
Model Group 3 (M3, P3, Q3 \& R3)
Models Q2 \& R2
Model Groups 11-14
Model Groups 21-24
Models 91E \& 92E
Entry level models

- System/370 Compatible - 3081 Processor Complex (1980)
- 3081 (1980)* Models D16, D24 \& D32
- 3081K (1981)

Models K16, K24 \& K32

- 3081 (1982)

Models GG16, G24 \& G32

- 3081 (1983)

Models G48 \& K48

- System/370 Compatible - 3084 Processor Complex (1982)
- 3084 (1982)* Models Q32, Q48 \& Q64
- 3084 (1983) Model Q96
- 3084X (1984)
- System/370 Compatible - 3090 Processor Series (1985)
- 3090 (1985)* Models 200 \& 400
- 3090 (1986) Models $150 \& 180$
- 3090E (1987) Models 150E, 180E, 200E, 300E, 400E \& 600E
- 3090 (1987) Model 120E
- ES/3090 (1988) Model 600S
- 3090E (1988) Models 280E \& 500E
- ES/3090 (1989) Multiprocessor and entry level models
- System/370 Compatible - 3083 Processor Complex (1982)

$\cdot 3083(1982)^{\star}$	Models E8, E16, B8, B16, B23, B32, J8, J16, J24 \& J32
\cdot	
$\cdot 3083$ E (1983)	Models E24 \& E32
- 3083 CX (1984)	Models CX0, CX1 - CX3

IBM Mainframes: 1990s

- System/390 Series (1990)
- ES/9000 (1990)* 18 models
- ES/9000 (1991) Seven models
- ES/9000 (1992) Two entry-level models
- ES/9000 (1993) 18 new models including Model 982
- (1994)
- ES/9000 (1994)

Parallel Sysplex and Parallel Query Server

- ES/9000 (1994)
- (1994) ${ }^{\star}$
- (1995)
- (1996)
- (1996)
- (1997)*
- (1998)*
- (1999)*
- (1999)*

Model 9X2
Five air-cooled processor
Six models of S/390 Parallel Enterprise Server
12 models of the S/390 Parallel Enterprise Server
Third generation (G3) of S/390 Parallel Enterprise Server
Multiprise 2000
S/390 Parallel Enterprise Server G4
S/390 Parallel Enterprise Server G5
S/390 Parallel Enterprise Server G6
Multiprise 3000

IBM Mainframes: 2000s

- IBM eServer ZSeries (2000)
- (2000)* 900
- (2002) ${ }^{*}$

800

- (2003)*

990

IBM Mainframes: z990

- 2003-present
- 32 processors
- z/OS operating system
- 256 GB memory
- 9,000 MIPS
- Clusters up to 64 (?) machines
- Click here \rightarrow a for a technical guide

Modern Mainframes: 2000s

Modern mainframes are defined by:
\square Redundant internal engineering, high availability
\square Backward compatibility with older software
\square Host multiple operating systems
Handle very high volume of input/output
\square Fault tolerant computing

Minicomputers

Minicomputers

- Evolved in the mid-1960s
- Much less expensive than IBM mainframes and mid-size computers
- Priced at < \$25,000 (\$147,859 in 2012)
- Input/output device such as a teleprinter
- Minimum 4K memory
- Capable of running programs in a higher level language such as Fortran, COBOL or Basic

The Future of Computers

There is no reason why anyone would want a computer in the home.

> Ken Olson (1977)

Founder \& CEO Digital Equipment Corporation (DEC)

In June 1998 DEC was acquired by Compaq, which Merged with Hewlett-Packard in May 2002

Alpha Microsystems

Alpha Microsystems still exists see (i)

- 1977
- Minicomputer, multiuser, multitasking
- S-100 bus
- Western Digital WD16 CPU, 3.3 MHz
- AMOS operating system*
- Alpha- BASIC, FORTRAN, LISP, PASCAL, C
- Vertical markets: medicine, dentistry, pharmacy, law, etc.
*Similar to DEC PDP-11

A Selection of Historical PCs

IBM 610

- 1957
- First "personal computer"
- Designed to be used by one person
- Price: $\$ 55,000$ (\$449,156 in 2012)

Kenback-1

- 1971
- The first PC (?)
- \$750 (\$4,250 in 2012)
- TTL chips for CPU $\quad 1$
- 8-bit architecture
- 256 bytes memory
- 1 MHz clock speed

Xerox Alto

- 1973
- First GUI
- First mouse
- From Xerox Parc
- Not a commercial product
- Thousands built and used internally

SCELBI-8

- 1974
- First microprocessor based hobbyist PC
- \$500 (\$2,330 in 2012)
- 1 KB RAM
- Intel 8008 CPU

MITS Altair 8800

- 1975
- First S-100 bus machine*
- First widely popular PC
- \$439 as kit (\$1,870 in 2012)
- \$621 assembled (\$2,650 in 2012)
- 1K or 2 K or 4KB RAM
- Intel 8080 CPU
- CP/M operating system
- 8-in floppy disk drive

IMSAI 8080

- 1975
- \$400+ as kit (\$1,700 in 2012)
- \$600+ assembled (\$2,560 in 2012)
- 64 K memory
- 2 MHz clock speed
- CP/M operating system \& others
- 8 or 51⁄4-in floppy disk drive
- ~18,000 produced 1975-78

Cromemco Z-1

- 1976
- 8K memory
- Z80 CPU
- CDOS operating system (CP/M-like); later UNIX
- Produced ~ dozen models
- Company survives as Cromemco AG (Switzerland)

Apple I

Designed \& built by Steve Wozniak Steve Jobs suggested selling them

Apple 1	
Introduced:	March 1976
Released:	July 1976
Price:	US $\$ 666.66 \mathrm{w} / 4 \mathrm{~K}$ RAM
How many? about 200 total	
CPU:	MOS 6502, 1.0 MHz
RAM:	$4 \mathrm{~K}, 65 \mathrm{~K}$ max
Display:	monochrome Keyboard:
280 X 192, 40×24 text norts: composite video output keyboard interface one vertical expansion slot	
Storage:	cassette interface available firmware in ROM (HEX)
OS:	Apple BASIC on cassette

\$2,684 in 2012

First Apple Manufacturing Plant

Homebrew Computer Club
 Palo Alto, California

- Instrumental in creating the technological culture of Silicon Valley
- First meeting March 1975
- Focus of meetings on Altair 8800 and other technical topics
- Members include:
\square John Draper - (AKA Captain Crunch), software developer
\square Bill Gates - Microsoft, Inc.
\square Steve Jobs \& Steve Wozniak - Apple, Inc.
\square Jerry Lawson - founder Videosoft (game developer)
\square Bob Marsh - Sol-20 computer
\square Adam Osborne \& Lee Felsenstein - Osborne 1 computer

Sol-20

- 1976
- First integrated machine with keyboard
- \$995 as a kit (\$4,012 today)
- 4 to 32 K memory
- Intel 8080 CPU
- 2 MHz clock speed
- CP/M operating system
- ~10,000 produced 1977-79

Commodore Pet 2001

- 1977
- First fully integrated "Appliance" computer
- MOS Technology 6502 CPU
- \$995 as a kit (\$4,012 today)
- 4, 8, 16, 32 K memory
- BASIC in ROM operating system
- Several ports
- 1 MHz clock speed

TRS 80 Model 1

2012—35 th Anniversary For more information click here \rightarrow (ii) \& here

- 1977
- Very popular and succesfull machine
- Zilog Z80 CPU
- \$600 (\$2,270 today)
- 32 or 64 K memory
- BASIC language (3 versions)
- TRS-DOS operating system (and others)
- 1 MHz clock speed

Apple II Series

1977 to 1988
Apple II
Apple II Plus
Apple II Europlus and J-Plus
Apple lle
Apple llc
Apple IIGS
Apple llc Plus
Apple lle Card

Succeeded by Apple Macintosh in 1984

Atari 400

- Sales of 4 million units

Apple III

"4
Mas iness oremend PC

- Many sobility issues and numerousolls
- A failure in the Roket, selling 65,000-75,9, $\mathbf{9}$ units

Osborne 1

- 1981
- First portable at 23.5 lbs . ("Luggable")
- \$1,795 (\$4,530 in 2012)
- A commercial success victim to the "Osborne Effect", i.e., premature announcement of new models that kills sales of current products
- Bankruptcy 1983

A Good Selection of Software (Osborne Computers)

Program Name	Version	Published by	Program Type	Date	Part Number	Number of Disks
CBASIC2		Digital Research	Language compiler	1979		
MBasic		Microsoft	Language interpreter		$301002-02 \mathrm{D}$	1
Colossal Cave			Game			
Deadline		Infocom	Game			2
dBase II		Ashton-Tate	Database			
dBase II Tutor		Ashton Tate	Training for database			6
Nominal Ledger	2.7	PeachTree Software	Business Software	1983	$2 \times 09200-04$	2
Purchase Ledger	2.7	PeachTree Software	Business Software	1983	$2 \times 09200-04$	2
Sales Ledger	2.7	PeachTree Software	Business Software	1983	$2 \times 09200-04$	2
SuperCalc		Sorcim	Spreadsheet	1981	$301002-03$	1
Wordstar	2.26	MicroPro	Word processor			1

Apple Lisa

> One month after the Lisa is discontinuted Steve Jobs leaves Apple to form the NeXT Computer company

Tim Berners-Lee at CERN (a sidebar)

- 1990-1991
- NeXT computer used for:
\square First Web server
\square Developing first Web browser named "WorldWideWeb"
- Defined URL
\square Defined HTML
- Defined HTTP
- In collaboration with Robert Cailliau

1955

Epson HX-20

IBM PC 5150

- 1981-IBM gets into the PC business
- PC line 1981-1987
- Intel 8088 CPU (4.77 MHz)
- Optional 8087 floating-point coprocessor
- 16 to 256 KB RAM
- BASIC (licensed from Microsoft)

The IBM PC Line
 (1981-1987)

IBM sells PC Line to Lenova (December 2004)

IBM sells its PC division to China-based Lenovo Group and take a minority stake in a deal valued at $\$ 1.75$ billion ($\$ 2.13$ billion in 2012)

Commodore 64

*Estimates range from 12-30 million

Apple Macintosh

- 1984
- AKA "The Mac"
- \$2,495 (\$5,510 in 2012)
- Mac OS 1 through 3.2*
- 128 KB RAM
- Motorola 68000 CPU; 4, 6, 8, 10, 12.5, 25 \& 50 MHz
*Called simply "System Software; for more information see

6GMOCS

128

- Macintosh 128 K
- Macintosh 512 K
- Macintosh 512 Ke
- Macintosh Plus

Lisa

- Macintosh XL ${ }^{[1]}$

SE

- Macintosh SE
- Macintosh SE FDHD
- Macintosh SE/30

Classic

- Macintosh Classic
- Macintosh Classic II

Color Classic

- Mac. Color Classic
- Mac. Color Classic II

LC 500 series

- Macintosh LC 520
- Macintosh LC 550
- Macintosh LC 575
- Macintosh LC 580
- Macintosh $\mathrm{TV}^{[2]}$

Power Macintosh 5000 series

- Power Mac 5200
- Power Mac 5300
- Power Mac 5400
- Power Mac 5500

20th Anniversary Mac.

- 20th Anniversary Mac.

${ }^{6} M / 2 C S^{59}$ (cont.)

iMac with iSight ${ }^{[7]}$

- iMac G5 (iSight)
- iMac Core
- iMac Core 2

- iMac Core 2
- iMac Core i5
- iMac Core i7

GBPMMAMS

Top 10 Computer ManufacturersWorldwide*

1. Hewlett-Packard
2. Acer
3. Dell
4. Lenovo
5. Toshiba
6. IBM
7. Fujitsu
8. NEC
9. Apple
10. Gateway (subsidiary of Acer)

Apple in $3^{\text {rd }}$ Place Among U.S. Mfg*

Company	1Q12 Shipments	1Q12 Market Share (\%)	1Q11 Shipments	1Q11 Market Share (\%)	1Q12-1Q11 Growth (\%)
HP	4,494	29.0	4,213	26.2	6.6
Dell	3,460	22.3	3,588	22.3	-3.6
Apple	1,641	10.6	1,580	9.8	3.8
Acer	1,418	9.1	1,913	11.9	-25.9
Toshiba	1,350	8.7	1,670	10.4	-19.2
Others	3,158	20.3	3,126	19.4	1.0
Total	$\mathbf{1 5 , 5 2 0}$	$\mathbf{1 0 0 . 0}$	$\mathbf{1 6 , 0 9 1}$	$\mathbf{1 0 0 . 0}$	$\mathbf{- 3 . 5}$

Gartner's Preliminary U.S. PC Vendor Unit Shipment Estimates for $1 Q 12$ (Thousands of Units)

Things have evolved...

...into the typical user!

Users We Have All Met...

And bring me a hard copy of the Internet so I can do some serious surfing. Scott Adams

Back up my hard disk? I can't find the reverse switch! Unknown

The cup holder in my laptop is broken! Unknown

The Price of Computers

The newest computer, 16-bit, with high-tech monitor... including mouse.

It is not worth it-in six months it will cost you half as much!

3 TB Disk Drive

- 2012
- Price \$162.99*
- Storage cost:
- $\$ 54.33$ per TB
- \$0.05433 per GB
- $\$ 0.0000543$ per MB (5.43×10^{-5})
- 3 TB will hold 1 million photos (3 MB each)

75 MB Disk Drive—for Alpha Microsystem

- 1979
- \$12,500 (\$39,500 in 2012)
- Storage cost (2012 dollars):
- $\$ 526.67$ per MB* ${ }^{\text {- }}$
- \$526,666.67 per GB
- 75 MB drive will hold 25 photos (3 MB each)

*In 1979, 3TB storage have would cost: $\$ 1.58$ billion

*In 2012: $\$ 0.0000543$ per MB $\left(5.43 \times 10^{-5}\right)<$

Imagine

If the price of cars had followed the price of disk drives...

2012 Mercedes-Benz SL63 AMG Roadster
2012 Price: \$170,000
1979 Price: \$54,000

If cars had paralleled the price of disk drives, how much would this car cost today?

But Matt.

Yesterday Only!

CONDITIONS: Only good in the U.S.A. and Greenland. Offer valid until August 17, 2012. No more than six cars per customer. Fleet purchases available at further discounts. Maximum allowed for trade-in on your vehicle in excellent condition is 1 c . A full tank of gasoline for each vehicle purchased is an additional \$263. Does not include applicable taxes, license fees, transportation from Stuttgart, or insurance. Offer invalid where Illegal.

[^0]: "Courtesy of Internationd Busmess Machines Corporation.

[^1]: *The Idea Factory: Bell Labs and the Great Age of American Innovation by Jon Gertner

